HEAT TRANSFER IN A CYLINDRICAL LAYER OF AN
ABSORBING MEDIUM BOUNDED BY NONBLACK SURFACES

L, A. Pigal'skaya UDC 536.3

The temperature field and the radiative—conductive heat flow in a cylindrical layer of a
weakly -absorbing medium are computed. '

We consider a cylindrical layer bounded by surfaces with reflection factors R; and R, and filled by a
medium with absorption coefficient «,,, refractive index n;,, and molecular thermal conductivity Apy.

In solving the problem of the temperature field in the layer with given temperature at its boundaries,
we make the following assumptions.

1. The thermal flows due to molecular thermal conductivity and radiative heat transfer can be com-
bined additively.

2. The absorption and natural radiation in an elementary volume of the medium are linked by Kirch-
hoff's law:

ey = ayniley,
where e, is the volume coefficient of radiation of the medium,

3. The quantities a;,, n,, and Ay are independent of the temperature within the limits of the tempera-
ture difference between the walls,

4. The surfaces bounding the layer reflect uniformly in all directions.

With these assumptions we solve the equation

div(Qy + Qg) = 0 (1)
with the boundary conditions
() =Ty
. (2)
T _(r o) = Ty
where Qy is defined by Fourier's law, To find Qg we solve the radiation intensity transport equation
dl,
is == — av[v -+ ocvngev. \ (3)

For each fixed direction S, defined by the two angles 6 and v, the derivatives of the intensity along the radius
and along the fixed direction S are linked by the equation

dl ar  dr

—_— e —— . 4
ds dr dS 4

where
% - v r————‘ l cos vy, (5)
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and § is the angle between the projection of S on a normal
section of the cylinder and the greatest diameter of the
cylinder; v is the angle which the vector § makes with the
plane of the normal section in the plane 4 = const (see Fig.
1), The derivative dr/dS changes sign at the point r =,
sin . From (4) and (5), Eq. (3) takes the form

dry |r rF—risin? |
o P cosy = — al} 4 a,nle,* , (6)

dry |V 17— rEsin®6 |
dr r

cosy = aly — anie,. (7

The sigh "+" corresponds to the direction in which r in-
creases, the sign "-" to that in which it decreases,

We also have to distinguish the directions which inter -
sect the internal surface of the layer (0 =6 = 6, sin 6 = r
/r,) and those which do not (6, = ¢ = r/2). The boundary
Fig.1. Normal section of the cylindrical conditions can be written as

layer. I*(rp 8, ) =& (T 2 (1 — R + Ry~ (ry 8, ),
1= (1 8, %) = o (T 1 (1 — R + Rol* (1 8, ),
0070, |

I 0, V)= e (T 2 (1 — Ry + Ryl* (ry, 6, 1),

%<e<%}. (8)

By solving (6) and (7) with the boundary conditions (8), we can obtain the difference I —I", We know that
in the general case the radiative component of the heat flow can be expressed as

Qg = | | (1" — 1) cos (r, 9) dodv, (9)
where dw is the element of solid angle,
It can be shown that for a cylindrical layer

cos(r, S)dw = -2 ¢0s 6 cos? y dody. (10)
r

Substituting I — I~ and (10) in (9), we obtain an expression for the radiative heat flow

L] /2 ruyre r

on =2 [ [ (o]~ e a2z 2
r P J s cosy /| Or

ry

Iy

+ 5‘ €xp (‘"0’4 el _‘x) —6-8— dr’ +R1 j. exp (—a{iﬁ) de dr’

cosy / or cosy or

/
£}

r

i 2r, —x—x'\ 3 ‘ o A X —x" — 2r]
+R25exp<——oc —L——w—)idr'——Rlegexp(——tx Bt rl)—ai,dr']dt

cosy ] or cos y or
Ty ry
rfts r iz
j‘ j‘ x—x’) de ., ‘ / ¥ —x\ G ,,
+ yi— lexp} —« ——dr'— | exp| —« —) —dr
’ cosy / or ( : cosy /| or
rifrz rat r
r2 s . 1 .
: / x4x\ 0 ., o2k —x
- — T | = dr' — R, \ exp| — @ -
2 S exp ( * cos y ) or' 25 P k cos Y )

ral rof
5]

) : 2r, —x—x'
~£,— dr' -+ sz exp| —a ~—2~—————) EE—dr’ dt} cos? ydydv, (11)
or cos y or

: ' 2ry 4+ x—x
exp ( —a —~——~>
. oS Y

8 ;
r £

*In what follows the sign of the modulus and the subscript v will be omitted.
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Fig.2. The nondimensional radiative heat flow ¥ as a
function of ¢ for Ry = R, = 0 —@a; for Ry = Ry —b; and for
R #Ry—c:a)1~-0aL=0;2-0,1;3-02;4~0.3;b) 1
—~0oL=0;R =Ry, =0; 2-0,2 and 0; 3— 0 and 0,2; 4 — 0,2
and 0,2; 5~ 0and 0,3; 6 ~ 0.2 and 0,3; 7—0and 0,5; 8

- 0,2 and 0,5; 9—0and 0.9; 10— 0,2 and 0,%; ¢) 1 — oL
=0;R; =0,R,=0,2;2-0.2,0,0,2; 3—-0.2, 02, 0; 4
-0,0,09 5-0.2,0,0,9 6~-0.2, 09,0,

where

T T —Rr. = r—
x=3 1. V()P =1y

*
rp==V =1l o e sind;

b= = \) ; 1

1 —RR,exp ( —2a

1~R2exp('—2u 2 )

cosy | \ COS Y |

Equation (1}, which has the following form for a cylindrical layer:

LM(/dz—T 1 E’_I_)~ 1 d(QR

dr® r o dr)

r dr

L]

where Qg is defined by (11), is in general a nonlinear second order integro-differential equation.

In what follows we consider a linear approximation of this equation, i,e., the case when

AT
- << 1;
T
and we retain only the linear term in the expansion of Planck's function:
o 0 dT
ér 9T dr'”
Making the substitution
dar .
—— =¢nul),
dr
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where

AT
rln—.r—z—
rl

o= (16)

is the expression for the temperature gradients in the layer when Qg = 0 and u(r) is a function to be defined,
we solve (12) by the method of successive approximations, taking u(r) = 1 as the zero order approximation,

We can only obtain u(r) in analytic form for certain special cases,

The greatest interest is in the solution of the case when aL is a small parameter (L = r,—ry), in
terms of which the integrals in (11) depending on oL are expanded, Having obtained u(r) in analytic form
and then, using (15) and (16), and the boundary conditions (2), after appropriate transformations, we obtain
an expression for the temperature distribution and the heat flow in the first approximation

©

- Inwy  ATR* [ 3¢
T T+ AT [1— 20 ) 4 2250 an?
F ( Ing ) A ( T “
° | 1mn
o L o lL L all
Ao o (g )60 o |+ [km o (=1 ]ha, o]l
where -
i vEacncin b Lar YE TR or2 & _mam—=8) PN
Fui(y, ©) == vParcsin —ﬁ— -3t ;W I 2C% arccos . Y Int n (q 5 )
f.(m, ©) =35V v — T + 2n?arcsin El—
— 2% arccos £ |- n®arccos - —Z— M+ 1= _r_; L= I
! i - £ ry
Q= —¢(r) {;LM+ al 5 _;";“ n*¥ (R, R, al, §) dv} ) (18)
; .
and

¥ = £, (R, RYD, (1) — Of EF”(RJ, R ®,, (1);

n=2

— 4% arccos § + arccos§+—n—(ig—g—§2)- ——l-g—), D, (L) = (lli‘:w
X (QXVT—C + 2arcsinl); ®,(2) = ——> _nt% @ ()= .
X (20V 1 —% + 2arcsing); @, (5) (l_c)zné s(0) T

X(6%y 1 —® - darcsin§ — nil® — 4Z2 arccos § + 2arccos § — m);

pooTl AR AR —RR o 2R(L—R)
‘ I=RR, 0T (I—RRY
Foom e PRUOA=RP .y Re—Ri
(1 - R1R2)2 1— R1R2

It is easy to verify that (17) and (18) are correct, since they must tend to the corresponding expressions
for a flat layer as t—1,

Putting

rpwsrg+ L, r=r-+y (19)

and making the expansions in series
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1 1 1 (20)
; VR n VEZR
aresin { == arcsin — == arccos ——— &= —— — ————,
1y ry 2 Iy

and then, having substituted (20) in (17) and (18), and finding the limit as r,/ry—1, y/r;—0, L/r;—0, we
obtain the corresponding expression for the flat layer [1].

By considering (17) and (18) we see that the temperature distribution in a cylindrical layer with weak
absorption depends on the optical properties of the walls only when they have different reflection factors,

In considering the expression for the heat flow we draw attention to the fact that when there is conduc-
tive and radiative transport the heat flow is proportional not to the real gradients in the layer, but to ¢(r),
i.e,, the influence of radiative transport on the heat flow is equivalent to a change in the coefficient of ther-
mal conductivity of the system, The coefficient of proportionality between Q and ¢(r) can be treated as the
effective thermal conductivity of the layer. It is significant that the effective thermal conductivity is not a
constant of the medium, since it depends not only on its thermal and optical properties and the optical prop-
erties of the surfaces, but also on the dimensions (L) and the configuration of the system (the parameter

t).

If @, is replaced by the Rosseland mean and we neglect the dependence of Ry, R, on », then ¥ becomes
the nondimensional radiative heat flow

= = . (21)

We consider ¥ as a function of ¢ for three different cases,
1. The layer is bounded by absolutely black walls,

On Fig.2a, ¥ is shown as a function of ¢ for various values of @L when Ry =R, = 0 (dotted curves),
The first term in ¥, which is independent of a1, describes the change in the heat flow due to heat transfer
between the walls, The function &,(¢) is shown in Fig,2a, by a continuous line, As the area of the internal
surface tends to zero, &;(¢) also tends to zero. The second term, which is a function of @ L, defines the
change in the heat flow due to.absorbing and radiating media,

For a flat layer (¢ =1, 0), when the radiation intensity at the walls is large, absorption dominates
natural radiation and the presence of an absorbing medium leads to a reduction in the heat flow proportional
to aL,

In the case of a "heated filament" (¢ — 0) the heat flows due to heat transfer between the walls are
small, as a result of which natural radiation dominates absorption. For ¢ — &, = 0.6 the heat flow is inde-
pendent of oL, The point ¢, is the same for all oL only for weak absorption, As the absorption increases,
the point ¢, is displaced to the left when the optical thickness of the layer increases and the curves gradually
degenerate into straight lines parallel to the axis of abscissae, since the effective thermal conductivity need
not depend on the configuration of the layer for strong absorption,

2. The layer is bounded by walls with the same reflective capabilities (R; = R, # 0).

On Fig.2b, ¥ is shown as a function of ¢ for oL = 0.2 and various values of R (R = 0, 0.2, 0,3, 0.5,
and 0.9). As the reflective capabilities of the walls increase and heat transfer between them decreases,
the role of natural radiation, of course, increases, The point ¢, moves to the right, When R = 0,29,
¢y =1.0. When R increases further, radiation dominates absorption throughout the whole region in
which ¢ varies,

3. The layer is bounded by walls of different reflective capabilities (R; # Ry # 0).
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On Fig,2c, ¥ is shown as a function of ¢ for the cases: D = +0.2 (R = 0, Ry = 0.2); D=-0,2 (R; = 0.2,
R, = 0) (curves 1,2,3); D = +0.9 Ry =0, R, =0.9); D=-0,9 (R; = 0.9, R, = 0) (curves 4,5,6). The sign of
D has a marked effect on the heat flow. An exception is the region of ¢ near to 1, where the curves corre-
sponding to the same value of D, but with opposite signs, merge together, Here the optical properties of
the surface, which has a large area for unit length, have a stronger influence, If, for example, the external
surface of the layer is "blacker™ than the internal surface, the contribution of the natural radiation is re-
duced (the dotted curves 4 and 6).

It must also be noted that as AR increases there is a considerable increase in the heat flow due to
natural radiation although the heat flow due to heat transfer between the walls remains approximately the
same, This is seen from a comparison of the curves Ry = Ry = 0.9 (Fig.2b) and R; = 0, R, = 0.9 (Fig.2c).
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NOTATION

is the absorption coefficient of the medium;

is the refractive index of the medium;

is Planck's function;

are the reflection factors of the internal and external cylinders respectively;
is the conductive heat flow;

is the radiative heat flow;

is the radius;

is the integration variable;

are the radii of the internal and external cylinders respectively;
is the thickness of the layer;

is the radiation direction vector;

are angles corresponding to the direction S;

is the radiation intensity;

is the solid angle;

is the temperature;

are the temperatures of the internal and external cylinders respectively;
is the temperature difference;

is the nondimensional radiative heat flow;

is a nondimensional coordinate;

is the nondimensional configuration parameter;

is the molecular thermal conductivity of the medium,
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